Cluster cells in spe using graph methods.
Usage
getClusters(
spe,
nbrs_name = NULL,
method = c("leiden", "louvain"),
resolution = 1,
cluster_name = "cluster",
seed = 1,
...
)
Arguments
- spe
A SpatialExperiment object.
- nbrs_name
Name of neighbour list for clustering. If NULL, will use the newest one in spe@metadata$nbrs$cell or create one if none are available.
- method
Clustering methods. Options are leiden and louvain.
- resolution
Higher resolution for more clusters and lower for fewer clusters. See cluster_leiden and cluster_louvain
- cluster_name
Name to store the clusters in spe's colData
- seed
seed for clustering
- ...
Other clustering arguments for cluster_leiden or cluster_louvain
Details
Cluster cells with igraph using SNN calculated by findNbrsSNN. Any neighbour list in spe@metadata$nbrs$cell can also be used
Examples
data("xenium_bc_spe")
spe <- normalizeAssay(spe)
spe <- runPCA(spe)
#> Genes with 0 variance are excluded: ENSG00000135218 NegControlProbe_00002 NegControlCodeword_0504 NegControlCodeword_0509 NegControlCodeword_0510 NegControlCodeword_0511 NegControlCodeword_0512 NegControlCodeword_0516 NegControlCodeword_0517 NegControlCodeword_0518 NegControlCodeword_0519 NegControlCodeword_0520 NegControlCodeword_0522 NegControlCodeword_0526 NegControlCodeword_0527 NegControlCodeword_0530 NegControlCodeword_0536 NegControlCodeword_0537 BLANK_0030 BLANK_0163 BLANK_0165 BLANK_0212 BLANK_0221 BLANK_0230 BLANK_0237 BLANK_0311 BLANK_0361 BLANK_0365 BLANK_0382 BLANK_0384 BLANK_0387 BLANK_0388 BLANK_0391 BLANK_0393 BLANK_0397 BLANK_0399 BLANK_0404 BLANK_0406 BLANK_0410 BLANK_0411 BLANK_0418 BLANK_0425 BLANK_0432 BLANK_0447
spe <- findNbrsSNN(spe,dimred="PCA")
#> [1] "Getting K-nearest neighbour"
#> [1] "Getting shared nearest neighbour"
spe <- getClusters(spe, resolution=0.5)